Scalable Compiler for the
TERMES Distributed Assembly System

Yawen Deng', Yiwen Hua', Nils Napp?, and Kirstin Petersen’
1 Cornell University, Ithaca, NY 14850, USA,

kirstin@cornell.edu,
2 University at Buffalo, Buffalo, NY 14260, USA,

Abstract. The TERMES system is a robot collective capable of autonomous
construction of 3D user-specified structures. A key component of the framework
is an off-line compiler which takes in a structure blueprint and generates a di-
rected map, in turn permitting an arbitrary number of robots to perform decen-
tralized construction in a provably correct manner. In past work, this compiler
was limited to a non-optimized search approach which scaled poorly with the
structure size. Here, we recast the process as a constraint satisfaction problem
and present new scalable compiler schemes and the ability to quickly generate
provably correct maps (or find that none exist) of structures with up to 1 million
bricks. We compare the performance of the compilers on a range of structures,
and show how the transition probability between locations in the structure may
be altered to improve system efficiency. This work represents an important step
towards collective robotic construction of real-world structures.

1 Introduction

Autonomous robots have the potential to revolutionize the construction industry en-
abling rapid fabrication of inexpensive structures, novel designs, and construction in
novel settings. Researchers and industrial specialists have proposed many solutions to
these challenges, one of which involves collectives of autonomous mobile robots which
can assemble structures much larger than the size of the individuals [1]]. By focusing on
distributed scalable coordination, such systems may deploy many robots to work effi-
ciently in parallel and be tolerant to individual failures. Although robot collectives have
received a lot of attention over the past couple of decades [2], most demonstrations are
limited to controlled laboratory settings, relatively small assemblies, and/or small col-
lectives. Open challenges range from scalable algorithms to capable, low-maintenance
hardware. Here, we focus on the former, i.e. improving the scalability of the algorith-
mic framework. We present our results in the context of the TERMES system presented
in previous literature [3l415l6]], but the approach may generalize to other distributed
construction systems.

The TERMES hardware consists of custom bricks and simple robots capable of
climbing on, navigating, and adding bricks to the structure (Fig.[T}A). Inspired by con-
struction in social insects, the robots coordinate construction implicitly through their
environment in a scalable manner. Despite this minimalistic approach the system has
been shown to assemble 3D structures with provable guarantees, by relying on a com-
bination of an off-line compiler and an onboard rule set. The compiler converts the
structure blueprint to a 2D-map with assembly locations, the desired number of bricks

2 Yawen Deng, Yiwen Hua, Nils Napp, and Kirstin Petersen

A B Cc —
N

5--)1{-)2--)3-92 -‘-)1 51 %“’j
7 ¥ + D
! 3 t &:Egilj
¥ ¥ e
2 3p3 2
} L I Il 5[1|213 Z‘l 1
£ T ¥ ¥
33335353 H3 1 3 1
+ b2 + il ¥ 2 3 (3|3 2
2 333 2]‘33]33]
= ¥ B
1 3 1 2 3 3 3 2
+ T + 1 3 1
1”1%2’>3*%2‘~’)1’9E 1‘1|2‘3 2‘1 E

Fig. 1. A) Photo of the TERMES system. B) Example of the map generated by the compiler (top
view). 'S’ and "E’ denote start and exit locations respectively; digits the number of bricks at each
location; arrows how robots can transition between locations. System limitations include that
bricks cannot be added in between others bricks (C, dimetric view), and that robots can climb at
most one brick height between neighboring locations (D, side view). The set of structures which
are compilable are not necessarily intuitive. E) shows a structure which cannot be compiled,
because the only way for a robot to complete the center would be an assembly move of type C.

at each location, and designated travel directions between locations (Fig.[T}B). This map
is given to an arbitrary number of robots, which follow these instructions and add ma-
terial as determined by the onboard rule set which is dictated solely by the limitations
of the robot platform used (Fig. [[]C-D). The scalability of the TERMES and similar
systems is determined by several factors, including 1) hardware cost and manufacturing
complexity; 2) robot reliability and how likely failures are to disrupt system progress;
3) how the coordination mechanisms scale with the size of the collective; 4) how the
compiler computation time scales with the size of the structure; and finally, and 5) how
efficiently robots can reach the assembly frontier.

Points 1-2 were addressed in [4]]. The system was designed with minimalism in mind
- co-design of robots, bricks, and algorithms resulted in a minimalistic robot costing
~$2K with a 1-week assembly time. The cost of the mechanics was brought down
considerably in a a subsequent paper [6]. The focus was not on perfect behavior, but
rather to enable robots to recognize and fix errors before they propagated. Point 3 was
addressed implicitly by relying on the structure as a shared physical database through
which the robots can coordinate [3l56]. Here, we focus instead on point 4, improving
the TERMES compiler to make it feasible to compile maps of large-scale structures.
We also briefly discuss point 5, i.e. how the transition probabilities between locations
in the map can be optimized for faster progress.

We recast the compiler originally described in [3] (Sec.[3) as a backtracking solution
to a constraint satisfaction problem (CSP) with pairwise, partial, and global constraint
checking. We show that the original compiler scales poorly with the size of the struc-
ture (Sec.). By examining the behavior of the original search as a solution to a CSP,
we are able to achieve significant improvements by formulating a new CSP that better
exploits forward checking pairwise constraints during the backtracking search (Sec. [3).
Finally, we describe and prove an entirely new formulation for generating maps that is
not based on search, but an iterative method that builds up feasible maps by considering
locations in a breadth-first manner starting from the exit location (Sec. [6). We show

Distributed Assembly 3

the ability of the latter to compile structures with up to 1 million bricks in ~1 min on
commodity hardware. We compare the performance of these compilers on different sets
of structures (Sec.[7), including unbuildable ones which are computationally intractable
for search-based compilers. We also show a method by which construction speed may
be improved (Sec. [).

2 Related Work

Decentralized robotic construction can be achieved in a variety of ways. Examples in-
clude pre-programmed robots for dedicated structures [7U819], template-based construc-
tion [10]], centralized controllers [[11] that allow for parallelism, communication-based
coordination [12J13]], and compiler-based systems [3114].

Compilers for generating matter, which take high-level specifications and generate
parallel assembly steps, are used in a variety of fields, e.g. digital materials [15]], self-
assembly, and modular robots [[16]]. In the construction setting, compilers must take
into consideration the physical constraints of both building material and the robots that
manipulate it. Constraints may exist both in mechanisms (e.g. the ability to traverse
the structure) and perception/cognition (the ability to sense/remember the state of the
surrounding structure). Broadly categorized, there are two ways to approach compilers.
The first is to define a set of sub-structures for which an assembly plan is known, and
then to decompose new structures into combinations of those. The second is to compile
based purely on the physical constraints of the system. Although the first method makes
reasoning and guarantees easier, it also limits the set of structures (some structures that
robots are physically capable of building cannot be compiled). The second method does
not artificially restrict the set of buildable structures, but makes it hard to reason about
what is buildable. In case of the latter, it is therefore critical that compilers can quickly
assess whether or not a structure is buildable, or potentially come up with alternative
solutions [[1715].

An example of the first approach include Seo et al. [14]] who presented a compiler
for 2D assembly of simply connected structures of floating bricks by boat-like robots,
which decomposes structures into linear cells. Another example involves that of Lind-
sey et al. [11118] who presented a compiler for assembly of strut structures by teams
of quadcopters. The struts could be assembled into structurally stable cubes. Conse-
quently, the compiler was designed to generate assembly rules for any structure which
was decomposable into such special cubic structures. Both of these systems have a con-
cise definition of the class of compilable structures.

The TERMES compiler is search-based and uses hardware limitations as constraints.
As previously mentioned, this makes it harder to infer which structures are buildable.
Figure [I|B and E shows structures which are buildable and unbuildable, respectively,
despite the fact that they differ by only one location and despite the fact that it is possi-
ble for a robot to physically assemble each separate location. The issue is that there is
no way to consistently order the assembly steps without violating the constraint shown
in C. Currently, for TERMES-like constraints, there is no good specification for which
structures have valid maps, other than when a map is found. This is especially problem-
atic if the compiler used is slow and has a long runtime before failing. Here, we show
that the compiler presented in [3]] scales poorly with the size and complexity of the

4 Yawen Deng, Yiwen Hua, Nils Napp, and Kirstin Petersen

structure, and present an alternative compilation method, such that arbitrary structures
can be compiled and checked quickly.

3 Problem Formulation

A structure consists of a finite set of locations L that each have integer x and y location,
ie. (I,ly) =1 € L. Two locations I,k € L are said to be neighbors when either the
x or y differ by one, but not when both are different. This type of neighbor relation
corresponds to a distance of 1 with the Manhattan distance metric. A path is a sequence
of locations p = (11,1, ..,Iy) such that consecutive locations are neighbors. We assume
that all the locations for a structure are path connected, i.e. every location has a path
to every other location. Disconnected structures can be treated as separate structures.
There are two special locations, /. € L and [, € L, which correspond to the start
and exit locations. In a structure, each location [has a target height #; € N. We say that
a path is traversable if each consecutive location differs in height by at most 1, which
corresponds to the motion limitations of a TERMES robot.

In order to make a building plan for the TERMES system, we need to generate a
directed graph on the vertex set L. To avoid the physical assembly constraint shown
in Fig. [I]C the graph needs to be acyclic and a location cannot have two opposing
incoming edges. To ensure traversability, the graph must have the additional properties
that for every [€ L there is a directed, traversable path from I, to reach [and for every
| € L there is a directed, traversable path to reach Iy . Isq has all outgoing edges; oy
has all incoming edges.

In summary, the properties of a valid map are as follows:

Property 1: The map contains no cycles.

Property 2: The map contains no opposing incoming arrows.

Property 3: All locations can reach an exit on a traversable path that is consis-
tent with the assigned edges.

Property 4: The start can reach all locations on a traversable path that is con-
sistent with the assigned edges.

Properties 3 and 4 imply that, except for Iy, and L. all locations must have di-
rected edges that point both in- and outwards. We refer to this local check for Properties
3 and 4 as the sink/source-condition. We will reference these properties throughout the
following sections.

4 Edge-CSP Compiler

The original compiler paper describes a procedure for searching through the space of
available assignments [3]. We recast this compiler as a backtracking search to a CSP
with pairwise, partial, and global constraint checking. The CSP problem consist of vari-
ables, domains (the possible values for each variable), and constraints (how variable as-
signments affect each other). The goal of backtracking search is to find an assignment,
i.e. picking from each domain one value for each variable [19, Ch6].

In accordance with the compiler described in [3], we make variables correspond
to edges between neighboring locations and give them a domain of the two possible
edge directions. We refer to this compiler as an Edge-CSP compiler, further shown in

Distributed Assembly 5

9 Elf}Ei}
¢l ¢ ¢ +I+éEf}
g P
<& o—“—-)—oE (_Eg}

Fig.2. Two versions of the CSP compiler applied to a 3 x 4 structure. A) In the Edge-CSP
variables correspond to edges between locations. The domain for vg are shown as an example to
the right of the structure. We can forward propagate the fixed variables, v; and v4 shown in red,
to fix vo, v3, and vy; shown in yellow according to property 2. B) In the Location-CSP variables
correspond to all possible combinations of directions to and from the location. The domain for
vg are shown as an example to the right of the structure. This scheme produces a fully connected
graph in which all constraints affect each other.

Fig.[2] A. The Edge-CSP tries to pick both a good variable ordering and a good domain
ordering. The variable ordering is to pick variables that are adjacent to already assigned
edges and as close to /s as possible. The domains are ordered to first explore edges
that point “away” from Iy, in a breadth first manner. This choice is based on the
observation that most edges in valid maps have this orientation.

We use three types of constraints. Binary constraints between edges that comply
with Property 2. Constraints on partial assignments which check for cycles, i.e. Property
1, and checks that each location with fully assigned edges other than Iy, and I,
complies with the sink/source-condition. Constraints on the global assignment which
checks Property 3-4, that every location can be be reached from Iy, and that /; can
be reached from every location. The benefit of the binary checks is that constraints may
be propagated forward to speed up the search using forward checking [19, Ch6]. We use
the AC3 algorithm to do this [20]. Forward checking with the binary constraints enable
a behavior equivalent to the “row rule” discussed in [3l], i.e. a behavior that causes the
structure to be built from one point outwards. An example of this is shown in Fig.[2lA;
if vy is fixed, v, and v3 are as well. Reversely, the fixed value of v{7 does not directly
affect those around it.

Notice that this compiler does not take the height of the structure into consideration
until the final global check. The search continues until all domain combinations have
been tried, or have been eliminated early by a local or partial check. The total number
of possible domain combinations scales as O(2"), where n corresponds to the number
of edges between locations in the structure. However, early termination of partial as-
signments prunes the space significantly. In general, all backtracking search may work
well on structures that have many feasible solutions, but will scale poorly with large
structures that have only a few or no solutions, and where bad branches in the search
tree cannot be pruned early.

Analyzing the compiler as a CSP shows that the binary constraints formulated on
edges limits the amount of forward checking that can be done, since each row or column
results in a disconnected component of constraint arcs. Furthermore, it is not possible
to use the sink/source-condition to forward propagate because it cannot be expressed as

6 Yawen Deng, Yiwen Hua, Nils Napp, and Kirstin Petersen

a binary constraint. To address these shortcomings we formulate a more efficient CSP
to solve the same problem in Sec. [5]

5 Location-CSP Compiler

To speed up the backtracking search, we change the formulation of the CSP such that
the variables become the locations and the domains include all combinations of travel
directions on the 4 edges as illustrated in Fig. 2] B. Consequently we refer to this algo-
rithm as a Location-CSP compiler. The benefit of this scheme is that it creates a fully
connected graph, where constraints may more readily affect other variables. Note that
like in the Edge-CSP, cycles and structure traversability is not checked until after partial
or full assignment.

6 BFD Compiler

The final compiler is not based on search, but instead does an iterative assignment of
the edge directions in a breadth-first manner starting from /.. Essentially, it evaluates
if a location may serve as a drain (an exit-like location) for the intermediate structures
where locations whose travel directions have been fully assigned were removed. We
refer to this algorithm as a Breadth-First Disassembly (BFD) compiler. The process is
shown in Fig. E]and Algm Upon initialization, l.y; is added to the frontier list, O fronrier-
The compiler iteratively takes an [y from Qfronsier and checks if it can serve as a drain.
To serve as a drain, /o must have the following properties: 1) it cannot be in between
two unassigned locations (Property 2), 2) it needs to have a traversable path to /,; that
only uses previously disassembled locations, and 3) it cannot cause a disconnect in the
structure which would cause a violation of Property 4. If these statements are true [
is added to Q,;sired, the edges to all neighbors are assigned as ingoing, and traversable
neighbors are added to Qfronrier- The compiler continues to do this until Q fronsier 1S
empty or no solution is found.

The biggest overhead in the BFD compiler is the connectivity check which hap-
pens each time a location is tested as a viable drain. Note that the connectivity check
takes the traversable height of the neighboring locations into account. We implement
two versions of this check. 1) BFDy: To check the connectivity, the compiler conducts
a breadth-first search starting from Iy, to count the number of reachable locations fol-
lowing unassigned edges. If this count is equal to the number of unvisited locations,
lp may serve as a drain. This requires a complete check of all remaining locations
(L\ Ovisirea)- 2) BFD: To speed this process up, we cache the connectivity computa-
tion by generating a spanning tree of unvisited locations. Removing leaves in the tree
does not disconnect the graph, so the connectivity check can return an answer without
having to traverse any nodes in the spanning tree. When the connectivity check is for
a non-leaf node, we perform the original connectivity check. If [y does not disconnect
the structure we add it to Q,;sireq and recompute the spanning tree. To create a spanning
tree that is likely to have leaf-nodes in Q fonsier, We add edges in breadth first manner
beginning from [y,,+ following traversable edges. In Sec. [/, we show that the second
method speeds up the process significantly.

Distributed Assembly 7

Algorithm 1 Pseudo code for the BFD Compiler which either returns a valid map, or
identifies that no such map exists. [y denotes the current location in question and /; its
neighboring locations. Q,;sireq 1S the set of visited locations which have been ’disassem-
bled’, i.e. fully determined; and Q fonsier is the frontier, locations that have traversable
paths to the exit and could potentially be disassembled next.
1: initialize Q fronsier and Qyjgireq as empty
initialize map to be an empty graph over the vertex set L

2:
3: add Ley; to Qfmntier

4: while Qyjer is not empty do
5

6

remove Iy from Q frontier
if [y is not in between two other unvisited sites (Property 2)
and removing /j does not disconnect the structure (Properties 3-4) then
T: Add lp to Oyisitea

8: for each unvisited neighboring site /; of [, do

9: add edge (/; ,ly) to map
10: if 3 traversable edge from /; to I, € Q,jsireq then
I add /; to eromier
12: if |Qyisired| = |L| then
13: return map
14: else
15: return False

6.1 Proof of correctness

This proof refers to the Properties 1-4 of a valid map, described in Sec. [3] and Algo-
rithm[I] The correctness proof is done by induction on the edges of visited locations for
properties 2-4. Property 1 follows from a gradient argument.

Theorem 1, BFD-Compiler Correctness: When the BFD compiler completes success-
fully, it produces a valid map.

Proof of Theorem 1:

Property 1: The edge assignment adds directions in such a way that the newly added
directions point from unvisited locations into visited locations (Lines 7-9). By follow-
ing such a direction (when it is traversable) a robot is brought one step closer to /.
Each location can be labeled with the steps left to /.. Since the paths in the map move
down the label gradient, they cannot contain cycles as that would require a path where
the label increases.

Properties 2-4: The induction hypothesis (IH) is that the edges of visited loca-
tions have Properties 2-4, as well as the two axillary properties: (Property 5) Vi, €
O frontier3 @ traversable path to the exit in the assigned map; and (Property 6) L\ Qyisired
is traversably path connected, i.e. all unvisited locations have traversable paths from
lsrars that only move over other unvisited locations.

Base case: Qfrontier has only oy Properties 2—4 are true for the empty set, Property
5 is true because /,;; is path connected to itself, and Property 6 is correct because we
assume that L is traversably connected.

8 Yawen Deng, Yiwen Hua, Nils Napp, and Kirstin Petersen

A B ¢ D
S1 1 2 S1 1 2 S1 1 2 S1 12
} 1 1
1 3 2 1 32 1 32 1 32
+ ¥ ¥ {
2 2 p1 2 2 p1 2 2 D1 2 2 p1
E E E E
E F G H
S1 142 S1—->1--)2 Sl—->1—-)2 S1-->1—->2
¥ 87 ¥ N7
1 32 1 352 1 352 1 32
| | 4 !
WV v T ¥
2 251 2 21 2 21 2 21
E E E E
1 J K L
S1—91-->2 Sl—-)1—-)2 S1—-)1-—)2 S1—91—->2
+ v ¥ | ¥
1 32 1 352 1 352 1 32
S | 1 AN] 1 A 1] N]
T N2 N2 L 32 82 T 32 82 T 82
2P 21 221 221 2p2-p1
E E E E

Fig. 3. BFD Compiler applied to a 3 x 3 structure. A) Consider /4 to be (0,0) and I, to be
(2,2); B) the compiler removes (2,1); C) (1,2) cannot be removed because this would cause a
disconnected structure; D) the compiler removes (2,0); E) (1,1) cannot be removed because of
Property 1. The compiler continues in the same manner until /y,,+ has been removed at which
point it returns a valid map. Notice that the yellow arrows do not count towards the traversability
check, but are needed for the robot rule set.

Induction step: When adding another element [y to Q,;sireq, Property 2 is true because
the new element would only have two opposing incoming directions if it had two un-
visited neighbors. Property 3 is true, because when /y was added to Q fronrier One of its
edges was directed to a location in Q,;sireq (Line 9) and by Property S in IH there is a
directed path toward the exit. Property 4 is true because of Property 6 in IH, /o can be
reached from Iy, and [; can be reached through [y after the new edge is added to the
map (Line 9). Property 5 is true because of (Line 10-11) and Property 3 in IH. Property
6 is true because of the second condition in Line 6. [J

Beyond proving that the compilers generate valid maps which work with the TER-
MES system, we also believe that the reverse is true; i.e. that the structure is unbuildable
with the TERMES system if the compiler fails. The intuition for this is as follows. The
compiler fails when Q fyoprier is empty and |Qysireq| 7 |L|. This happens when no more
locations can be disassembled, either because they are not traversable from visited lo-
cations (Property 3) or because they are in between two other locations (Property 2).
In other words, the structure formed by unvisited locations could not have been built
because the last addition to the structure does not exist.

7 Comparison of Compilers

We next evaluate how the runtime of the compilers scale with the number of locations
for different types of structures (Fig. d). These results are generated in a single process
on a standard laptop (Intel(R) Core(TM) i7-4720HQ, CPU @ 2.60GHz, quad core, 16G
of RAM).

Distributed Assembly 9

A &« ECSP (1.60) i B -a éL‘ﬁP {1.50)
107 |[*e s an) A | Hew cse (135)
=% BFDo (1.B2) Fa ' | ® BFDo (1.58) .
a |l B s | w 10% H{oe 8D (L0 s
- 10 1= i B
= 1 S
S 10" o
U P 0T
0] Y] |
£ 10° 1 E
o e -z
E 1ot L EW®
= | €
=1 2 | 3
10 |
= i &= 10
107 -
10! 10¢ 10° 10' 10° 10° 10} 10° 10?
MNumber of Locations Number of Locations
5 »
10%H e » BFDO (1.89) '
“ " = BFD [1.46)
£ £
c 5 10
5 (&)
v @ 10°
E c
] w
E E 1wo?
= =
c c
= =1
4 107
10° .
10* 10 10? 107 10° 10* 10°
Number of Locations Number of Locations

Fig. 4. Runtime of compilers versus the number of locations in different types of structures, in-
cluding A) square, buildable structures of height 1, B) square, buildable structures of random
height, C) square, unbuildable structures of random height, and D) unbuildable structures similar
to that shown in Fig. mD. Insets indicate how we scale the number of locations; marks annotate
mean of 10 runs (in the case of random height structures, 10 different structures of the same
number of locations were tested); error bars indicate maximum and minimum runtime; and the
number in the parenthesis gives the slope of the best fit line for all data in the curve.

Fig. @A shows the runtime of each compiler as the number of locations grow in
a 1-height square structure. The Edge-CSP can compile such simple structures with
10,000 bricks in around 100 s; for scale, a standard U.S. family house contains around
the same amount. As expected the Location-CSP does slightly better because the con-
straints propagate more readily. Notice that for small structures both BFD compilers
compile about 10 times faster than the CSP compilers. The BFD(compiler converges to
quadratic growth (slope 2 in log-log axis), and as the structure size approaches 100,000
locations the CSPs will start to outperform it. This happens because their domain-
variable ordering is especially optimized for these simple square structures so that the
first tried assignment during the search is usually correct. By adding the improved con-
nectivity check, the BFD outperforms all other compilers (scaling almost linearly) and
can easily compile structures with up to 1 million bricks (comparable to the number of
bricks in the Great Pyramid of Giza, egyptorigins.com). Similar results can be noted
when we run the compilers on buildable structures with randomly generated height
profiles up to 7 bricks tall (Fig. [@]B).

10 Yawen Deng, Yiwen Hua, Nils Napp, and Kirstin Petersen

Fig. @]C shows the runtime on unbuildable structures with randomly generated
height profiles. The runtime of the Edge-CSP now varies significantly because the
search only terminates early if it finds a locally checkable error. Such errors are more
likely to be found with the Location-CSP compiler. The new BFD compilers show a
similar scalability as before. Fig. f]D shows the runtime for unbuildable structures,
also presented in Fig. [I|D, which violate Property 2 with any consistent ordering. This
structure is especially slow to search through, since ordering inconsistencies cannot be
detected locally. Each internal raft has four connectors, and each of these may, from the
raft’s perspective, be either a sink or a source. If it is a sink it violates property 2, and
as a result all possible source combinations are tried first. We halted compilations that
exceeded 24 hours of runtime, which is why both CSP compilers are only presented
with a single data point. Notice again, how the BFD(compiler scale quadratically with
the size of the structure, and the improved BFD compiler scales almost linearly.

8 Improving Transition Probabilities

During construction individual robots do not know the assembly state and must guess
which path to take to find an assembly site. In the maps presented in [3]], a robot in
/; has a uniform probability of choosing any of the traversable neighboring locations.
This approach can lead to wasted trips where a robot exits the structure without finding
a place to assemble the brick it is carrying. This is especially true for dense structures
where a few key bricks must be inserted before the rest can be added. A representative
example of such a structure is the random height 15 x 15 structure shown in the inset
in Fig. 4] B. The map generated for this structure is shown in Fig.[5] A. The probability,
P, of finding a robot in a location /;, with parent locations, /; and probabilities P;, is
calculated as:
J
Pi=) PiPji O]
j=1

where Pj; denotes the transition probability from /; to /;, and J the total number of
parent locations. Figure [5|B shows an example of how uniform transition probabilities
cause robots to visit in the center of the structure during most trips, since there are
many combinations of choices that reach those locations. This results in both wasted
trips, where no bricks can be added, and bottlenecks where all robots try to file through
the same area.

By using the graph of parent and child nodes, we can optimize the transition prob-
abilities to more effectively spread the flow of robots over the structure. We base this
optimization on the distance in the graph to /. For locations with the same distance,
we need to minimize the difference of P;. We use Sequential Least Square Programming
(SLSQP) minimization to find improved transition probabilities P;;. The constraints cor-
respond to 1) Pyar = 1, 2) Pypin > 0, and 3) outgoing edge directions from a location
must sum to 1. Fig. [5]C shows how improved transition values change the distribu-
tion of robots over the locations in the structures. To test the difference in construction
speed, we simulated a 5-robot team and counted the total number of steps until structure
completion. With uniform transition probabilities, the robots complete the structure in
2,216,370 steps (we ran this once). With improved transition probabilities, the structure

Distributed Assembly 11

B D !
0.333
st 0.1
0T
-+ e
Faen Fasarasasnsarns 0033
. i
0.01
0.003
o+ -+
T 0.001
Farasy e
A 0
a s L
Y ul o

Fig. 5. Improving the transition probabilities between locations in the map helps speed up con-
struction. A) Example 15 x 15 location structure with a random height profile and a total of 406
bricks. This structure is also shown in the inset in Fig. E[B. B) Structure map. The start and exit
location is colored in yellow and blue respectively. In this map all edges are directed towards
the exit (right or down respectively). Non-traversable edges in the final structure are colored in
blue. C-D) The probability of a robot to traverse over a location when all children from every
node have uniform transition probabilities, and when the probabilities are improved according
to the distance to the exit. E-F) Snapshots from the simulation showing how improved transition
probabilities speed up construction significantly (bricks are shown in white; robots in green).

is completed in an average of 68,877 (averaged over 10 trials), indicating a speed-up
of more than 30 times. Note, that this increases is structure dependent, and that the ap-
proach presented here only considers locations not then number of remaining bricks. In
the future these maps may be further optimized by considering the bulk of bricks that
needs to be placed in different locations.

9 Conclusion and Future Work

In summary we have presented work to address the scalability of the TERMES com-
piler, and demonstrated a BFD compiler which scales better than quadratic with the
number of locations in the structure independent of whether or not that structure is
buildable. We demonstrated this on structures with up to 1 million bricks, which were
compiled on commodity hardware in minutes. We have further shown an approach by
which the transition probabilities between locations in the generated map can be im-
proved for faster construction speed without added hardware complexity. Future work
will involve development of metrics by which to evaluate the compiled maps, especially
in terms of the parallelism they offer, and compilers which can suggest modifications
to make unbuildable structures buildable. The transition probabilities may further be
optimized by taking the height of the structure into consideration.

Acknowledgements
This work was supported by the Getty Labs.

12

Yawen Deng, Yiwen Hua, Nils Napp, and Kirstin Petersen

References

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

K. Petersen and R. Nagpal, “Complex Design by Simple Robots,” Architectural Design, pp.
44-49,2017.

. M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review from the

swarm engineering perspective,” Swarm Intelligence, vol. 7, no. 1, pp. 1-41, 2013.

. J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior in a termite-inspired

robot construction team.” Science, vol. 343, no. 6172, pp. 754-8, 2014.

. K. Petersen, R. Nagpal, and J. Werfel, “TERMES: An autonomous robotic system for three-

dimensional collective construction,” Robotics: Science and Systems Conference VII, 2011.

. J. Werfel, K. Petersen, and R. Nagpal, “Distributed multi-robot algorithms for the TERMES

3D collective construction system,” in In Modular Robotics Workshop, IEEE Intl. Conference
on Robots and Systems (IROS)., 2011.

. Y. Hua, Y. Deng, and K. Petersen, “Robots Building Bridges, Not Walls,” in /EEE Interna-

tional Workshops on Foundations and Applications of Self* Systems, 2018.

. M. S. D. Silva, V. Thangavelu, W. Gosrich, and N. Napp, “Autonomous Adaptive Modifica-

tion of Unstructured Environments,” Robotics: Science and Systems, 2018.

. N. Napp and R. Nagpal, “Robotic construction of arbitrary shapes with amorphous materi-

als,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 438—
444, 2014.

. K. Stoy and R. Nagpal, “Self-reconfiguration using directed growth,” Distributed au-

tonomous robotic systems 6, pp. 3—12, 2007.

T. Soleymani, V. Trianni, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous construc-
tion with compliant building material,” in Intelligent Autonomous Systems 13. Springer,
2016, pp. 1371-1388.

V. Lindsey, Q., Mellinger, D., Kumar, “Construction of Cubic Structures with Quadrotor
Teams,” Robotics: Science and Systems VII, 2011.

C. Jones and M. J. Mataric, “Toward a multi-robot coordination formalism,” DTIC Docu-
ment, Tech. Rep., 2004.

M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in a thousand-
robot swarm,” Science, vol. 345, no. 6198, pp. 795-799, 2014.

J. Seo, M. Yim, and V. Kumar, “Assembly planning for planar structures of a brick wall
pattern with rectangular modular robots,” in 2013 IEEE International Conference on Au-
tomation Science and Engineering (CASE), Aug 2013, pp. 1016-1021.

C. Coulais, E. Teomy, K. de Reus, Y. Shokef, and M. van Hecke, “Combinatorial design of
textured mechanical metamaterials,” Nature, vol. 535, no. 7613, p. 529, 2016.

T. Tucci, B. Piranda, and J. Bourgeois, “A Distributed Self-Assembly Planning Algorithm
for Modular Robots,” in Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2018, pp. 550-558.

T. S. Kumar, S. J. Jung, and S. Koenig, “A tree-based algorithm for construction robots.” in
ICAPS, 2014.

V. Lindsey, Q., Mellinger, D., Kumar, “Construction with quadrotor teams,” Autonomous
Robots, vol. 33, no. 3, pp. 323-336, 2012.

S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited,, 2016.

A. K. Mackworth, “Consistency in networks of relations,” Artificial Intelligence, vol. 8, no. 1,
pp- 99 — 118, 1977.

	Scalable Compiler for the TERMES Distributed Assembly System

